Efficient Rare-event Simulation for Multiple Jump Events of Heavy-tailed Lévy Processes with Infinite Activities

Xingyu Wang Chang-Han Rhee

Northwestern University

Xingyu Wang WSC 2020 Dec 2020 2/17

Rare-event simulation for Lévy processes

Rare-event simulation for Lévy processes

Rare-event simulation for Lévy processes

Option pricing

Queuing networks

Task at hand: Through simulation, estimate

$$\mathbb{P}(X \in A)$$

Rare-event simulation for Lévy processes

Task at hand: Through simulation, estimate

$$\mathbb{P}(X \in A)$$
Lévy process $\{X(t): t \in [0,1]\}$

Rare-event simulation for Lévy processes

Task at hand: Through simulation, estimate

Rare-event simulation for Lévy processes

Task at hand: Through simulation, estimate

$$\mathbb{P}(X\in A)$$
 Lévy process $\{X(t): t\in [0,1]\}$ $X\in A$ is rare

• Why is this difficult?

Scaled processes: $\bar{X}_n \triangleq \{X(nt)/n : t \in [0,1]\}$

Scaled processes: $\bar{X}_n \triangleq \{X(nt)/n : t \in [0,1]\}$

Scaled processes: $\bar{X}_n \triangleq \{X(nt)/n : t \in [0,1]\}$

Scaled processes: $\bar{X}_n \triangleq \{X(nt)/n : t \in [0,1]\}$

 \bullet $\mathbf{0} \notin A$

Scaled processes: $\bar{X}_n \triangleq \{X(nt)/n : t \in [0,1]\}$

 $\bullet \ \mathbf{0} \notin A \Rightarrow \mathbb{P}(\bar{X}_n \in A) \to 0.$

オロトオ団トオミトオミト ミ からの

• $\mathbb{P}(\bar{X}_n \in A) \to 0$

Xingyu Wang WSC 2020 Dec 2020 5/1'

•
$$\mathbb{P}(\bar{X}_n \in A) \to 0$$

• Required # of samples for 10% relative error:

• $\mathbb{P}(\bar{X}_n \in A) \to 0$

• Required # of samples for 10% relative error:

	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$

•
$$\mathbb{P}(\bar{X}_n \in A) \to 0$$

• Required # of samples for 10% relative error:

∠Polynomial rate

	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$

- $\mathbb{P}(\bar{X}_n \in A) \to 0$
- Strong Efficiency: estimators $(L_n)_{n\geq 1}$ for $\mathbb{P}(\bar{X}_n\in A)$

• Required # of samples for 10% relative error:

✓ Polynomial rate

		2	
	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$

- $\mathbb{P}(\bar{X}_n \in A) \to 0$
- Strong Efficiency: estimators $(L_n)_{n\geq 1}$ for $\mathbb{P}(\bar{X}_n\in A)$

$$\limsup_n \mathbb{E}L_n^2/(\mathbb{E}L_n)^2 < \infty.$$

Required # of samples for 10% relative error:

∠Polynomial rate

	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$

- $\mathbb{P}(\bar{X}_n \in A) \to 0$
- Strong Efficiency: estimators $(L_n)_{n\geq 1}$ for $\mathbb{P}(\bar{X}_n\in A)$

$$\limsup_n \mathbb{E}L_n^2/(\mathbb{E}L_n)^2 < \infty.$$

• Required # of samples for 10% relative error:

✓ Polynomial rate

	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$
Strongly efficient estimator ($\alpha = 3$)	$\approx 10^7$	$\approx 10^7$	$\approx 10^7$
Strongly efficient estimator ($\alpha = 5$)	$\approx 10^{10}$	$\approx 10^{10}$	$\approx 10^{10}$

Xingyu Wang WSC 2020 Dec 2020 5/17

- $\mathbb{P}(\bar{X}_n \in A) \to 0$
- Strong Efficiency: estimators $(L_n)_{n>1}$ for $\mathbb{P}(\bar{X}_n \in A)$

$$\limsup_n \mathbb{E}L_n^2/(\mathbb{E}L_n)^2 < \infty.$$

Required # of samples for 10% relative error:

✓ Polynomial rate

	k 2		
	n = 100	n = 1000	n = 10000
Crude Monte-Carlo method ($\alpha = 3$)	$\approx 10^{15}$	$\approx 10^{19}$	$\approx 10^{23}$
Crude Monte-Carlo method ($\alpha = 5$)	$\approx 10^{20}$	$\approx 10^{28}$	$\approx 10^{36}$
Strongly efficient estimator ($\alpha = 3$)	$\approx 10^7$	$\approx 10^7$	$\approx 10^7$
Strongly efficient estimator ($\alpha = 5$)	$\approx 10^{10}$	$\approx 10^{10}$	$\approx 10^{10}$

 $^{\sim}$ Uniform bound for any n

Xingyu Wang WSC 2020 Dec 2020 5/17

• "Simulate X, check if $X \in A$ "

- "Simulate X, check if $X \in A$ "
- Infinite activities in process X

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- \bullet Hard to simulate **extrema** of X

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of *X*

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of *X*

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of *X*

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of *X*

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of *X*

- "Simulate X, check if $X \in A$ "
- Infinite activities in process $X \Rightarrow$ cannot simulate the entire path
- Hard to simulate **extrema** of X

Algorithm

Xingyu Wang WSC 2020 Dec 2020 7/17

Lévy Process X

Lévy Process X

• Infinite activities (not compound Poisson), $\mathbb{E}X(t) = 0 \ \forall t$

Lévy Process X

- Infinite activities (not compound Poisson), $\mathbb{E}X(t) = 0 \ \forall t$
- Heavy-tailed: $X(1) \in RV_{-\alpha}$ with $\alpha > 1$

Lévy Process X

- Infinite activities (not compound Poisson), $\mathbb{E}X(t) = 0 \ \forall t$
- Heavy-tailed: $X(1) \in RV_{-\alpha}$ with $\alpha > 1$ \Rightarrow Tail of the distribution for X(t) - X(s) resembles $x^{-\alpha}$.

Lévy Process X

- Infinite activities (not compound Poisson), $\mathbb{E}X(t) = 0 \ \forall t$
- Heavy-tailed: $X(1) \in RV_{-\alpha}$ with $\alpha > 1$ \Rightarrow Tail of the distribution for X(t) - X(s) resembles $x^{-\alpha}$.

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

Rhee, Blanchet & Zwart (2019): For $A_n = {\bar{X}_n \in A}$, we have

• How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$

Rhee, Blanchet & Zwart (2019): For $A_n = {\bar{X}_n \in A}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- l^* : Minimal # of jumps for a **step function** to be in A

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Running example (reinsurance): "all claim < b, still go bankrupt (total loss > a)"

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Running example (reinsurance): "all claim < b, still go bankrupt (total loss > a)"

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Running example (reinsurance): "all claim < b, still go bankrupt (total loss > a)"

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Running example (reinsurance): "all claim < b, still go bankrupt (total loss > a)"

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in A

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in A

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in A

Rhee, Blanchet & Zwart (2019): For $A_n = {\bar{X}_n \in A}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Rhee, Blanchet & Zwart (2019): For $A_n = {\bar{X}_n \in A}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

Rhee, Blanchet & Zwart (2019): For $A_n = \{\bar{X}_n \in A\}$, we have

- How rare the events are: $\mathbb{P}(A_n) \sim C(A) \cdot n^{-l^*(\alpha-1)}$
- How the rare events occur: \bar{X}_n will most likely look like l^* -jump step function
- *l**: Minimal # of jumps for a **step function** to be in *A*

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

• $d\mathbb{P}/d\mathbb{Q} < \infty$.

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

- $d\mathbb{P}/d\mathbb{Q} < \infty$.
- $\mathbb{Q}(\cdot)$ approximates $\mathbb{P}(\cdot|\bar{X}_n \in A)$.

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

- $d\mathbb{P}/d\mathbb{Q} < \infty$.
- $\mathbb{Q}(\cdot)$ approximates $\mathbb{P}(\cdot|\bar{X}_n \in A)$.

 \leftarrow most likely has l^* large jumps

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

- $d\mathbb{P}/d\mathbb{Q} < \infty$.
- $\mathbb{Q}(\cdot)$ approximates $\mathbb{P}(\cdot|\bar{X}_n \in A)$.

 \leftarrow most likely has l^* large jumps

•

 $f \in B \Leftrightarrow f$ has at least l^* jumps that are larger than γ

• Importance sampling: Generate $X \sim \mathbb{Q}$ instead of \mathbb{P} ,

$$\mathbb{E}_{\mathbb{P}} \mathbb{1} \{ X \in A \} = \mathbb{E}_{\mathbb{Q}} \frac{d\mathbb{P}}{d\mathbb{Q}} \mathbb{1} \{ X \in A \}$$

• Extend the framework in Chen et al. (2019)

$$\mathbb{Q}(\cdot) = w\mathbb{P}(\cdot) + (1 - w)\mathbb{P}(\cdot | \bar{X}_n \in \mathbf{B}).$$

We proposed algorithm to sample from $\mathbb{P}(\cdot|\bar{X}_n \in B)$

- $d\mathbb{P}/d\mathbb{Q} < \infty$.
- $\mathbb{Q}(\cdot)$ approximates $\mathbb{P}(\cdot|\bar{X}_n \in A)$.

 \leftarrow most likely has l^* large jumps

•

 $f \in B \Leftrightarrow f$ has at least l^* jumps that are larger than γ

• Want to know $\mathbb{E}Y$; Cannot simulate Y

Xingyu Wang WSC 2020 Dec 2020 11/17

- Want to know $\mathbb{E}Y$; Cannot simulate Y
- Approximations: $\mathbb{E}Y_m \to \mathbb{E}Y$

- Want to know $\mathbb{E}Y$; Cannot simulate Y
- Approximations: $\mathbb{E}Y_m \to \mathbb{E}Y$
- Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

$$Z = \sum_{m=1}^{\tau} \frac{Y_m - Y_{m-1}}{\mathbb{P}(\tau \ge m)}$$

- Want to know $\mathbb{E}Y$; Cannot simulate Y
- Approximations: $\mathbb{E}Y_m \to \mathbb{E}Y$
- Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

$$Z = \sum_{m=1}^{\tau} \frac{Y_m - Y_{m-1}}{\mathbb{P}(\tau \ge m)}$$

• Finite computational effort: Only need Y_1, \dots, Y_{τ} .

How to Debias Discrete Approximation Error

- Want to know $\mathbb{E}Y$; Cannot simulate Y
- Approximations: $\mathbb{E}Y_m \to \mathbb{E}Y$
- Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

$$Z = \sum_{m=1}^{\tau} \frac{Y_m - Y_{m-1}}{\mathbb{P}(\tau \ge m)}$$

- Finite computational effort: Only need Y_1, \dots, Y_{τ} .
- <u>Unbiasedness:</u> For appropriate τ , $\mathbb{E}Z = \mathbb{E}Y$.

How to Debias Discrete Approximation Error

- Want to know $\mathbb{E}Y$; Cannot simulate Y
- Approximations: $\mathbb{E}Y_m \to \mathbb{E}Y$
- Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

$$Z = \sum_{m=1}^{\tau} \frac{Y_m - Y_{m-1}}{\mathbb{P}(\tau \ge m)}$$

- Finite computational effort: Only need Y_1, \dots, Y_{τ} .
- <u>Unbiasedness:</u> For appropriate τ , $\mathbb{E}Z = \mathbb{E}Y$.
- Question: What approximation $(Y_m)_{m\geq 1}$ should we use?

Concave majorant of X

Concave majorant of X

Concave majorant of X

$$l_1 = g_1 - d_1, \ s_1 = X(g_1) - X(d_1)$$

Concave majorant of X

Concave majorant of X

$$l_2 = g_2 - d_2, \ \ s_2 = X(g_2) - X(d_2)$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

$$l_1 \sim \text{Unif}(0,1)$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

$$l_1 \sim \operatorname{Unif}(0,1), \ s_1 \stackrel{d}{=} X(l_1)$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

$$l_2 \sim \text{Unif}(0, 1 - l_1)$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

$$l_2 \sim \text{Unif}(0, 1 - l_1), \ s_2 \stackrel{d}{=} X(l_2)$$

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking procedure

$$l_3 \sim \text{Unif}(0, 1 - l_1 - l_2)$$

Concave majorant of X

$$(l_n,s_n)_{n>1}$$

Stick breaking procedure

$$l_3 \sim \text{Unif}(0, 1 - l_1 - l_2), s_3 \stackrel{d}{=} X(l_3)$$

Concave majorant of X

 $(l_n,s_n)_{n\geq 1}$

Stick breaking procedure

$$(l_n,s_n)_{n\geq 1}$$

Concave majorant of *X*

$$(l_n,s_n)_{n\geq 1}$$

Pitman and Bravo (2012)

Stick breaking procedure

$$(l_n,s_n)_{n\geq 1}$$

□ ト ◆ 個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (~)

Concave majorant of X

$$(l_n,s_n)_{n\geq 1}$$

Stick breaking approximation

$$\left(l_n, s_n\right)_{n=1}^M$$

Concave majorant of *X*

 $(l_n,s_n)_{n\geq 1}$

Stick breaking approximation

Geometric convergence rate

$$\left(l_n, s_n\right)_{n=1}^M$$

Theoretical Analysis of the Algorithm

```
Algorithm 1 Efficient Estimation of \mathbb{P}(A_n)
Require: w \in (0,1), \gamma > 0, \rho \in (0,1)
 1: if Unif(0,1) < w then
                                                                                                                                                  \triangleright Sample J_n from \mathbb{Q}
            Sample J_n = \sum_{i=1}^k z_i \mathbb{1}_{[u_i,n]} from \mathbb{P}
 3: else
            Sample J_n = \sum_{i=1}^k z_i \mathbb{1}_{[u,n]} from \mathbb{P}(\cdot | B_n^{\gamma}) using Algorithm 2
 5: end if
 6: Let u_0 = 0, u_{k+1} = n.

 Sample τ ~ Geom(ρ)

                                                                                                                                    Decide Truncation Index τ
 8: for i = 0, 1, \dots, k do
                                                                                               Decide Increments Decide Increments
            Sample U_1^{(i)} \sim \text{Unif}(0,1). Let I_1^{(i)} = U_1^{(i)}(u_{i+1} - u_i)
         Sample \xi_{i,1} \sim F_{\widetilde{v}}(\cdot, l_1^{(i)})
           for j = 2, 3, \dots, \lceil \log_2(n^2) \rceil + \tau do
11:
                   Sample U_i^{(i)} \sim \text{Unif}(0,1). Let l_i^{(i)} = U_i^{(i)}(u_{i+1} - u_i - l_1^{(i)} - l_2^{(i)} - \dots - l_{i-1}^{(i)})
12.
               Sample \xi_{i,j} \sim F_{\widetilde{X}}(\cdot, l_i^{(i)})
13:
14.
            end for
            Let l_{\lceil \log(n^2) \rceil + \tau + 1}^{(i)} = u_{i+1} - u_i - l_1^{(i)} - l_2^{(i)} - \dots - l_{\lceil \log(n^2) \rceil + \tau}^{(i)}
            Sample \xi_{i,\lceil \log_2(n^2)\rceil+\tau+1} \sim F_{\widetilde{Y}}(\cdot, l_{\lceil \log_2(n^2)\rceil+\tau+1}^{(i)})
17: end for
 18: for m = 0, 1, \dots, \tau do
                                                                                                                                                           ⊳ Evaluate Y<sub>n m</sub>
            \begin{array}{l} \mbox{for } i = 0, 1, 2, \cdots, k \ \mbox{do} \\ \mbox{Let } \widetilde{M}_{m}^{(i)} = \sum_{l=1}^{i-1} \sum_{j=1}^{\lceil \log_2(n^2) \rceil + \tau + 1} \xi_{l,i}^m + \sum_{j=1}^{\lceil \log_2(n^2) \rceil + \tau} (\xi_{l,j}^m)^+ \end{array}
20:
            Let Y_{n,m} = 1 \{ \max_{i=0,1,\dots,k} \widetilde{M}_m^{(i)} + J_n(u_i) \ge na \}
23: end for
24: Let Z_n = Y_{n,0} + \sum_{m=1}^{\tau} (Y_{n,m} - Y_{n,m-1}) / \rho^{m-1}
                                                                                                                                        \triangleright Return the Estimator L_n
25: if \max_{i=1,\dots,k} z_i > b then
26:
             Return L_n = 0.
27: else
            Let \lambda_n = nv[n\gamma, \infty), p_n = 1 - \sum_{l=0}^{l^*-1} e^{-\lambda_n} \frac{\lambda_n^l}{l!}, I_n = \mathbb{1}\{J_n \in B_n^\gamma\}
            Return L_n = Z_n/(w + \frac{1-w}{n}I_n)
30: end if
```

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption: For any $z_0 > 0$, there exist $C > 0, \beta > 0, \theta \in (0, 1]$ such that for any $t > 0, z \ge z_0, x \in \mathbb{R}, \delta \in [0, 1]$, we have

$$\mathbb{P}(X^{$$

where $X^{<z}$ is the Lévy process with the generating triplet $(c_X, \sigma^2, v|_{(-\infty,z)})$.

| □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ | 볼 | 쒼 Q (~)

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

• Either there is Brownian motion in *X*;

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in *X*;
- Or for Lévy measure v

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in *X*;
- Or for Lévy measure v, $v(\mathbb{R}) = \infty$ and $v(\mathbb{R}\setminus [-x,x]) > x^{-\beta}$ when x close to 0.

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in X; $\leftarrow X$ with infinite activities
- Or for Lévy measure v, $v(\mathbb{R}) = \infty$ and $v(\mathbb{R}\setminus [-x,x]) > x^{-\beta}$ when x close to 0.

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in X; $\leftarrow X$ with infinite activities
- Or for Lévy measure v, $v(\mathbb{R}) = \infty$ and $v(\mathbb{R} \setminus [-x, x]) > x^{-\beta}$ when x close to 0.

4 D > 4 B > 4 E > 4 E > 9 Q P

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in X; $\leftarrow X$ with infinite activities
- Or for Lévy measure v, $v(\mathbb{R}) = \infty$ and $v(\mathbb{R} \setminus [-x, x]) > x^{-\beta}$ when x close to 0.

 X with infinite activities \nearrow Only requirement: not too slow

Theorem (W. and Rhee, 2020)

If **assumption** (A1) holds, then our importance sampling algorithm is unbiased and strongly efficient.

Assumption:

Distribution of X(t) does not concentrate at any x. (A1)

Two sufficient conditions for (A1):

- Either there is Brownian motion in *X*;
- Or for Lévy measure v, $v(\mathbb{R}) = \infty$ and $v(\mathbb{R} \setminus [-x,x]) > x^{-\beta}$ when x close to 0.

The algorithm is applicable to a broad class of heavy-tailed Lévy processes.

Numerical Experiments

Experiment Results: Reinsurance Case

Experiment Results: Reinsurance Case

Experiment Results: Reinsurance Case

Conclusion

Proposed importance sampling algorithms

- for heavy-tailed Lévy processes with infinite activities
- with guarantee of strong efficiency
- Significant improvements illustrated in numerical experiments
- \bullet extension to cases where X(t) is not simulatable is also available

Xingyu Wang WSC 2020 Dec 2020