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Rare-event simulation for Lévy processes
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P(X ∈ A)
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Lévy process {X(t) : t ∈ [0,1]} ↗ ↖{X ∈ A} is rare

Xingyu Wang WSC 2020 Dec 2020 3 / 17



Introduction

Rare-event simulation for Lévy processes
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Difficulty 1: Inefficiency

Scaled processes: X̄n =
∆ {X(nt)/n : t ∈ [0,1]}

0 /∈ A⇒ P(X̄n ∈ A)→ 0.
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Difficulty 1: Inefficiency

P(X̄n ∈ A)→ 0

Strong Efficiency: estimators (Ln)n≥1 for P(X̄n ∈ A)

limsup
n

EL2
n/(ELn)

2 < ∞.

Required # of samples for 10% relative error:

n = 100 n = 1000 n = 10000
Crude Monte-Carlo method (α = 3) ≈ 1015 ≈ 1019 ≈ 1023

Crude Monte-Carlo method (α = 5) ≈ 1020 ≈ 1028 ≈ 1036

Strongly efficient estimator (α = 3) ≈ 107 ≈ 107 ≈ 107

Strongly efficient estimator (α = 5) ≈ 1010 ≈ 1010 ≈ 1010

↙Polynomial rate

↖Uniform bound for any n
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Difficulty 2: Simulation of X with Infinite Activity

“Simulate X, check if X ∈ A”

Infinite activities in process X⇒ cannot simulate the entire path

Hard to simulate extrema of X
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Problem Setting

Lévy Process X

Infinite activities (not compound Poisson), EX(t) = 0 ∀t
Heavy-tailed: X(1) ∈ RV−α with α > 1

⇒ Tail of the distribution for X(t)−X(s) resembles x−α .

Gaussian Heavy-tailed
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Lévy Process X

Infinite activities (not compound Poisson), EX(t) = 0 ∀t
Heavy-tailed: X(1) ∈ RV−α with α > 1

⇒ Tail of the distribution for X(t)−X(s) resembles x−α .

Gaussian Heavy-tailed

Xingyu Wang WSC 2020 Dec 2020 8 / 17



Problem Setting
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Large Deviation Principle for Heavy-tailed Lévy Processes

Rhee, Blanchet & Zwart (2019): For An = {X̄n ∈ A}, we have

How rare the events are: P(An)∼ C(A) ·n−l∗(α−1)

How the rare events occur: X̄n will most likely look like l∗-jump step function

l∗:

↙Almost always the case

“Catastrophe Principle”
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Rhee, Blanchet & Zwart (2019): For An = {X̄n ∈ A}, we have

How rare the events are: P(An)∼ C(A) ·n−l∗(α−1)

How the rare events occur: X̄n will most likely look like l∗-jump step function

l∗: Minimal # of jumps for a step function to be in A

Running example (reinsurance): “all claim < b, still go bankrupt (total loss > a)”

↙Almost always the case

“Catastrophe Principle”

Xingyu Wang WSC 2020 Dec 2020 9 / 17



Large Deviation Principle for Heavy-tailed Lévy Processes
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l∗: Minimal # of jumps for a step function to be in A

↙Almost always the case

“Catastrophe Principle”
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Strongly Efficient Importance Sampling Algorithm

Importance sampling: Generate X ∼Q instead of P,

EP1{X ∈ A}= EQ
dP
dQ

1{X ∈ A}

Extend the framework in Chen et al. (2019)

Q(·) = wP(·)+(1−w)P(·|X̄n ∈ B).

dP/dQ< ∞.

Q(·) approximates P(·|X̄n ∈ A).

f ∈ B⇔ f has at least l∗ jumps that are larger than γ

←most likely has l∗ large jumps

We proposed algorithm to sample from P(·|X̄n ∈ B)
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How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



How to Debias Discrete Approximation Error

Want to know EY; Cannot simulate Y

Approximations: EYm→ EY

Rhee and Glynn (2015): Randomized Monte-Carlo Estimator

Z =
τ

∑
m=1

Ym−Ym−1

P(τ ≥ m)

Finite computational effort: Only need Y1, · · · ,Yτ .

Unbiasedness: For appropriate τ , EZ = EY .

Question: What approximation (Ym)m≥1 should we use?

Xingyu Wang WSC 2020 Dec 2020 11 / 17



Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

l1 = g1−d1, s1 = X(g1)−X(d1)

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

l2 = g2−d2, s2 = X(g2)−X(d2)

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

d2 g2

l2 = g2−d2, s2 = X(g2)−X(d2)

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

d2 g2

(
ln,sn

)
n≥1

Geometric convergence rate↗
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d2 g2
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s1

(
ln,sn

)
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

d2 g2

l3

s3

(
ln,sn

)
n≥1 l3 ∼ Unif(0,1− l1− l2)

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking procedure

d2 g2

l3

s3

(
ln,sn

)
n≥1

(
ln,sn

)
n≥1=d

Pitman and Bravo (2012)

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking approximation

d2 g2

l3

s3

(
ln,sn

)
n≥1

(
ln,sn

)M
n=1

Geometric convergence rate↗
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Efficient Approximation via Concave Majorization

Concave majorant of X Stick breaking approximation

d2 g2

l3

s3

(
ln,sn

)
n≥1

(
ln,sn

)M
n=1

Geometric convergence rate↗
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Theoretical Analysis of the Algorithm
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Strong Efficiency

Theorem (W. and Rhee, 2020)
If assumption (A1) holds, then our importance sampling algorithm is unbiased and
strongly efficient.

Assumption: For any z0 > 0, there exist C > 0,β > 0,θ ∈ (0,1] such that for any
t > 0,z≥ z0,x ∈ R,δ ∈ [0,1], we have

P(X<z(t) ∈ [x,x+δ ])≤ C
tβ ∧1

δ
θ ;

where X<z is the Lévy process with the generating triplet (cX,σ
2,ν |(−∞,z)).

Two sufficient conditions for (A1):

Either there is Brownian motion in X;

Or for Lévy measure ν , ν(R) = ∞ and ν(R\[−x,x])> x−β when x close to 0.

← X with infinite activities

X with infinite activities↗ ↖Only requirement: not too slowThe algorithm is applicable to a broad class of heavy-tailed Lévy processes.
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Or for Lévy measure ν , ν(R) = ∞ and ν(R\[−x,x])> x−β when x close to 0.

← X with infinite activities

X with infinite activities↗ ↖Only requirement: not too slowThe algorithm is applicable to a broad class of heavy-tailed Lévy processes.
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Or for Lévy measure ν , ν(R) = ∞ and ν(R\[−x,x])> x−β when x close to 0.

← X with infinite activities

X with infinite activities↗ ↖Only requirement: not too slowThe algorithm is applicable to a broad class of heavy-tailed Lévy processes.
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where X<z is the Lévy process with the generating triplet (cX,σ
2,ν |(−∞,z)).

Two sufficient conditions for (A1):

Either there is Brownian motion in X;
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Numerical Experiments
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Experiment Results: Reinsurance Case

2000 4000 6000 8000 10000
n
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α = 1.45

α = 1.6

α = 1.75

X(t) = B(t)+∑N(t)
i=1 Wi; (Wi) iid Pareto-α , arrival rate 0.1;

a = 2,b = 1.15,γ = 0.2,ρ = 0.95,w = 0.05.

↙ std/mean, implies required # of samples

The larger n is, the rarer An is
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Conclusion

Proposed importance sampling algorithms

for heavy-tailed Lévy processes with infinite activities

with guarantee of strong efficiency

Significant improvements illustrated in numerical experiments

extension to cases where X(t) is not simulatable is also available
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