Eliminating Sharp Minima with Truncated Heavy-tailed Noise

Xingyu Wang*, Sewoong Oh[†], Chang-Han Rhee*

Northwestern University*, University of Washington†

DeepMath 2021

```
0123456789

0123456789

0123456789

0123456789

0123456789

0123456789
```

Training Set

Training Set

Test Set

Training Set

Test Set

Training/Test Error

Generalization of DNN

• Generalization Mystery of Stochastic Gradient Descent (SGD)

Training Set

Test Set

Training/Test Error

- Generalization of DNN
 - Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

- Generalization of DNN
 - Generalization Mystery of Stochastic Gradient Descent (SGD)
- Nonconvex Landscape, Numerous Local Minima

- Generalization of DNN
 - Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.

- Generalization of DNN
 - Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
 - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

- Generalization of DNN
- Generalization Mystery of Stochastic Gradient Descent (SGD)
- Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.
 - Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

• **Q**: SGD prefers flat minima?

$$\mathsf{GD} \qquad X_j = X_{j-1} - \eta \ \nabla f(X_{j-1})$$

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

Traditional Assumption: Light-tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{2} \right)$$

Traditional Assumption: Light-tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{T_j} \right)$$
 Heavy-tailed

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

[►] Heavy-tailed

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $Z_j \in RV_{-\alpha}$ with $\alpha > 1$

Traditional Assumption: Light-tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{Z_j} \right)$$

↑ Heavy-tailed

• Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{X_j} \right)$$

↑ Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

[►] Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{X_j} \right)$$

[►] Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)_{\kappa}$$

△ Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + Z_j \right)$$

△ Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Traditional Assumption: Light tailed

SGD
$$X_j = X_{j-1} - \eta \left(\nabla f(X_{j-1}) + \frac{Z_j}{Z_j} \right)$$

[►] Heavy-tailed

- Heavy-tailed Noises: $\mathbb{E}Z_j = 0$, $\mathbb{P}(\|Z_j\| > x)$ resembles power law $x^{-\alpha}$
- Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);
- Why heavy tails arise: Hodgkinson & Mahoney (2020);
- Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Our Work: Complete Elimination of Sharp Minima

$$X_{j} = X_{j-1} - \frac{\varphi_{b}(\eta \nabla f(X_{j-1}) + \eta Z_{j})}{\|\varphi_{b}(x)\|}; \quad \frac{\varphi_{b}(x)}{\|x\|} = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Gradient Clipping

$$X_j = X_{j-1} - \varphi_b(\eta \nabla f(X_{j-1}) + \eta Z_j); \quad \varphi_b(x) = \min\{b, ||x||\} \cdot \frac{x}{||x||}$$

Gradient Clipping

$$X_j = X_{j-1} - \varphi_b(\eta \nabla f(X_{j-1}) + \eta Z_j); \quad \varphi_b(x) = \min\{b, ||x||\} \cdot \frac{x}{||x||}$$

Q: How does truncated heavy-tailed noise help?

Gradient Clipping
$$\downarrow X_j = X_{j-1} - \varphi_b(\eta \nabla f(X_{j-1}) + \eta Z_j); \quad \varphi_b(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: How does truncated heavy-tailed noise help?

Gradient Clipping
$$X_{j} = X_{j-1} - \varphi_{b}(\eta \nabla f(X_{j-1}) + \eta Z_{j}); \quad \varphi_{b}(x) = \min\{b, \|x\|\} \cdot \frac{x}{\|x\|}$$

Q: Why does truncated heavy-tailed noise help?

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc.

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Structural difference in the way systemwide rare events arise.

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Structural difference in the way systemwide rare events arise.

Light-Tailed Distributions

- Extreme Values are Very Rare
- Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

- Extreme Values are Frequent
- Power Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.

Typical Behavior of SGD

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

Typical Behavior of SGD

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

Typical Behavior of SGD

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

$$X_j^{\eta} = X_{j-1}^{\eta} - \eta \left(\nabla f(X_{j-1}^{\eta}) + Z_j \right)$$

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are **light-tailed**

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are **light-tailed**

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are light-tailed

Trajectory of SGD X^{η} :

 $\eta=1/10$ & noises are heavy-tailed

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are **light-tailed**

Trajectory of SGD X^{η} :

 $\eta = 1/10$ & noises are heavy-tailed

Trajectory of SGD X^{η} : $\eta = 1/25$ & noises are **light-tailed** Trajectory of SGD X^{η} : $\eta = 1/25$ & noises are heavy-tailed

Typical Behavior of SGD

Typical Behavior of SGD

9

Typical Behavior of SGD

9

How does SGD escape local minima?

(Su, Wang, Rhee, 2021+) For "rare event" A,

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

 $\text{(Su, Wang, Rhee, 2021+)} \text{ For "rare event" } A \text{, (i.e. } \mathbb{P}(\boxed{X^{\eta}} \in A) \to 0 \text{ as } \eta \downarrow 0)$

 $\text{(Su, Wang, Rhee, 2021+)} \text{ For "rare event" } A \text{, (i.e. } \mathbb{P}(\boxed{X^{\eta}} \in A) \to 0 \text{ as } \eta \downarrow 0)$

• $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)/(A)}$

(Su, Wang, Rhee, 2021+) For "rare event" A, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

- $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)/(A)}$
- Conditioned on $\{X^{\eta} \in A\}$, X^{η} resembles piece-wise gradient flow with $I^*(A)$ jumps

(Su, Wang, Rhee, 2021+) For "rare event"
$$A$$
, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

• $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)/(A)}$

- Typical Behavior \
- Conditioned on $\{X^{\eta} \in A\}$, X^{η} resembles piece-wise gradient flow with $I^*(A)$ jumps

(Su, Wang, Rhee, 2021+) For "rare event"
$$A$$
, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

• $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)/(A)}$

Typical Behavior \searrow

Catastrophes

• Conditioned on $\{X^{\eta} \in A\}$, X^{η} resembles piece-wise gradient flow with $I^*(A)$ jumps

11

(Su, Wang, Rhee, 2021+) For "rare event"
$$A$$
, (i.e. $\mathbb{P}(X^{\eta} \in A) \to 0$ as $\eta \downarrow 0$)

• $\mathbb{P}(X^{\eta} \in A) \approx \eta^{(\alpha-1)/(A)}$

Typical Behavior \searrow

Catastrophes

- Conditioned on $\{X^{\eta} \in A\}$, X^{η} resembles piece-wise gradient flow with $I^*(A)$ jumps
- $I^*(A)$: Min # of jumps (catastrophes) to cause event A

Most likely path under heavy-tailed noises: with $I^* = 1$ jump

Most likely path under heavy-tailed noises: with $I^* = 1$ jump

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta = 1/10$

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta = 1/10$

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta = 1/25$

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta = 1/25$

Clipping threshold $X_i^{\eta} = X_{i-1}^{\eta} + \frac{\varphi_b}{(-\eta \nabla f(X_{i-1}^{\eta}) + \eta Z_j)}, \frac{b}{b} \in (r/2, r)$

14

Clipping threshold $X_i^{\eta} = X_{i-1}^{\eta} + \varphi_{b} \left(-\eta \nabla f(X_{i-1}^{\eta}) + \eta Z_{j} \right), \frac{b}{b} \in (r/2, r)$

1

Clipping threshold

$$X_j^{\eta} = X_{j-1}^{\eta} + \frac{\varphi_b}{\left(-\eta \nabla f(X_{j-1}^{\eta}) + \eta Z_j\right), \frac{b}{b} \in (r/2, r)}$$

Clipping threshold $X_i^{\eta} = X_{i-1}^{\eta} + \varphi_{b} \left(-\eta \nabla f(X_{i-1}^{\eta}) + \eta Z_{j} \right), \frac{b}{b} \in (r/2, r)$

1

∠Clipping threshold

$$X_i^{\eta} = X_{i-1}^{\eta} + \varphi_{\boldsymbol{b}}(-\eta \nabla f(X_{i-1}^{\eta}) + \eta Z_j), \overset{\iota}{\boldsymbol{b}} \in (r/2, r)$$

Most likely path under heavy-tailed noises: with $I^* = 2$ jumps

✓ Clipping threshold

$$X_i^{\eta} = X_{i-1}^{\eta} + \varphi_{\boldsymbol{b}} (-\eta \nabla f(X_{i-1}^{\eta}) + \eta Z_j), \overset{\bullet}{\boldsymbol{b}} \in (r/2, r)$$

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta = 1/25$

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta = 1/25$

Trajectory of SGD X^{η} conditional on exit:

light-tailed noises with $\eta = 1/100$

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta = 1/100$

light-tailed noises with $\eta = 1/200$

Trajectory of SGD X^{η} conditional on exit:

heavy-tailed noises with $\eta=1/200$

$$X_j^\eta = X_{j-1}^\eta + rac{arphi_{m b}}{\left(-\eta
abla f(X_{j-1}^\eta) + \eta Z_j
ight)}, egin{array}{c} \searrow ext{Clipping threshold} \ \in (r/4,r/3) \end{array}$$

$$X_j^\eta = X_{j-1}^\eta + rac{arphi_{m b}}{\left(-\eta
abla f(X_{j-1}^\eta) + \eta Z_j
ight)}, egin{array}{c} \searrow ext{Clipping threshold} \ \in (r/4,r/3) \end{array}$$

(Min # of jumps for escape) $I^* = \lceil r/b \rceil$

 $\bullet \ \ \textbf{First Exit Time:} \ \ \boldsymbol{\sigma^{\eta}} \triangleq \ \min\{j \geq 0: \ \ \boldsymbol{X_j^{\eta} \notin \Omega}\}$

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- **Effective Width** (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- Relative Width (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.

- $\bullet \ \, \textbf{First Exit Time:} \ \, \boldsymbol{\sigma^{\eta}} \triangleq \ \, \min\{j \geq 0: \ \, X_{j}^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0$, $\sigma^{\eta} \lambda(\eta) \Rightarrow \textit{Exp}(q)$.

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- Effective Width (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.
- (Wang, Oh, Rhee, 2021+) As $\eta \downarrow 0$, $\sigma^{\eta} \lambda(\eta) \Rightarrow Exp(q)$. $(\lambda(\eta) \approx O(\eta^{\alpha + (l^* 1)(\alpha 1)}), \text{ deterministic})$

- First Exit Time: $\sigma^{\eta} \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- **Effective Width** (Min Distance for Escape): $r \triangleq \inf_{x \notin \Omega} |x m|$.
- **Relative Width** (Min # of jumps for Escape): $I^* \triangleq \lceil r/b \rceil$.

$$\sigma^{\eta} \sim O(1/\lambda(\eta)) \approx O(1/\eta^{\alpha+(I^*-1)(\alpha-1)})$$

17

Without Clipping

Without Clipping

With Clipping

• Min # of jumps for escape: I_i^*

• Min # of jumps for escape: l_i^* (Example: set b = 0.5)

• Min # of jumps for escape: I_i^* (Example: set b = 0.5)

- Min # of jumps for escape: l_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $I_i^* = \max_j I_j^*$.

- Min # of jumps for escape: l_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $I_i^* = \max_j I_j^*$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t>0 and $\beta>1+(\alpha-1)\max_i l_i^*$,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} 1 \Big\{ X_{\lfloor u \rfloor}^{\eta} \in \bigcup_{j: m_{j} \notin M^{\textit{wide}}} \Omega_{j} \Big\} du \xrightarrow{P} 0 \text{ as } \eta \downarrow 0.$$

18

- Min # of jumps for escape: l_i^* (Example: set b = 0.5)
- Set of Widest Minima: $m_i \in M^{\text{wide}}$ iff $I_i^* = \max_j I_j^*$.

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t>0 and $\beta>1+(\alpha-1)\max_i l_i^*$,

$$\frac{1}{\lfloor t/\eta^{\beta} \rfloor} \int_{0}^{\lfloor t/\eta^{\beta} \rfloor} 1 \Big\{ X_{\lfloor u \rfloor}^{\eta} \in \bigcup_{j: m_{j} \notin M^{\textit{wide}}} \Omega_{j} \Big\} du \overset{\mathrm{P}}{\to} 0 \; \textit{as} \; \eta \downarrow 0.$$

\mathbb{R}^d Case

• Same Elimination Effect in \mathbb{R}^d

New Training Algorithm

Truncated Heavy-tailed SGD in Deep Learning

• Our Method: $X \leftarrow X - \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights;
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\mathsf{heavy}}(X))$ where

Truncated Heavy-tailed SGD in Deep Learning

- X: current weights; \checkmark Gradient Clipping
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\mathsf{heavy}}(X))$ where

- X: current weights;
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{"Heavy-tailed Noise"}$$

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{"Heavy-tailed Noise"}$$

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{"Heavy-tailed Noise"}$$

• Gradient noise: $g_{SB}(X) - g_{GD}(X)$

21

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + \text{"Heavy-tailed Noise"}$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{GD}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB}*}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB*}}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Same or independent batches?
- **Heavy-tail Inflation:** $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

- X: current weights; **GD**: gradient descent; **SB**: small batch; g_{XX} : gradient under method XX.
- Our Method: $X \leftarrow X \varphi_b(\eta \cdot g_{\text{heavy}}(X))$ where

$$g_{\text{heavy}}(X) \triangleq g_{\text{SB}}(X) + Z(-g_{\text{LB}}(X) + g_{\text{SB*}}(X))$$

- Gradient noise: $g_{SB}(X) g_{GD}(X)$
- Same or independent batches? ⇒two versions
- Heavy-tail Inflation: $Z(g_{SB}(X) g_{GD}(X))$ for some heavy-tailed Z

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

• Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance

Test accuracy	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	68.66%	69.20%	68.77%	64.43%	69.47%	70.06%
SVHN, VGG11	82.87%	85.92%	85.95%	38.85%	88.42%	88.37%
CIFAR10, VGG11	69.39%	74.42%	74.38%	40.50%	75.69%	75.87%
Expected Sharpness	LB	SB	SB + Clip	SB + Noise	Our 1	Our 2
CorrputedFMNIST, LeNet	0.032	0.008	0.009	0.047	0.003	0.002
SVHN, VGG11	0.694	0.037	0.041	0.012	0.002	0.005
CIFAR10, VGG11	2.043	0.050	0.039	2.046	0.024	0.037

- Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
 - Consistent results under other sharpness metrics
- Flatter geometry & Improved generalization performance
- Requires both heavy-tailed noise and truncation

CIFAR10-VGG11	SB + Clip	Our 1	Our 2
Test Accuracy	89.54%	90.76%	90.45%
Expected Sharpness	0.167	0.085	0.096
PAC-Bayes Sharpness	$1.31 imes 10^4$	$9 imes 10^3$	10 ⁴
Maximal Sharpness	1.66×10^{4}	1.29×10^{4}	1.22×10^{4}
CIFAR100-VGG16	SB + Clip	Our 1	Our 2
Test Accuracy	56.32%	65.44%	62.99%
Expected Sharpness	0.857	0.441	0.479
PAC-Bayes Sharpness	2.49×10^4	$1.9 imes 10^4$	1.98×10^{4}
Maximal Sharpness	2.75×10^4	2.12×10^4	2.16×10^{4}

• More training techniques: Data augmentation, learning rate scheduler.

Conclusion

Theoretical Contribution

- Rigorously established that truncated heavy-tailed noises can eliminate sharp minima
- Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD

Algorithmic Contribution

• Proposed a tail-inflation strategy to find flatter solution with better generalization

• "Regularity conditions"

• "Regularity conditions"

• "Regularity conditions"

• "Regularity conditions": Irreducibility

• "Regularity conditions": Irreducibility

• We established similar results for the reducible case.

• "Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^d Extension
 - ullet First exit time results in \mathbb{R}^d

"Regularity conditions": Irreducibility

- We established similar results for the reducible case.
- \mathbb{R}^d Extension
 - First exit time results in \mathbb{R}^d
 - \mathbb{R}^d simulation experiments

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- $\bullet \ \, \textbf{First Exit Time:} \ \, \sigma(\eta) \triangleq \ \, \min\{j \geq 0: \, \, X_j^\eta \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- $\bullet \ \, \textbf{First Exit Time:} \ \, \sigma(\eta) \triangleq \, \min\{j \geq 0: \, \, X_j^\eta \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- $\bullet \ \, \textbf{First Exit Time:} \ \, \sigma(\eta) \triangleq \, \min\{j \geq 0: \, \, X_j^\eta \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

- $\bullet \ \, \textbf{First Exit Time:} \ \, \sigma(\eta) \triangleq \, \min\{j \geq 0: \, \, X_j^\eta \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

Exit Prob.: $O(\eta^{(I^*-1)(\alpha-1)})$

Duration: $O(1/\eta^{\alpha})$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

Exit Prob.: $O(\eta^{(l^*-1)(\alpha-1)})$ Duration: $O(1/\eta^{\alpha})$ $\Rightarrow \sigma(\eta) \sim O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

Exit Prob.: $O(\eta^{(l^*-1)(\alpha-1)})$ Duration: $O(1/\eta^{\alpha})$ $\Rightarrow \sigma(\eta) \sim O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$

For (Lebesgue) almost every b>0, there exist some q>0 and $\lambda(\eta)\in RV_{\alpha+(l^*-1)(\alpha-1)}(\eta)$ such that $\sigma(\eta)\lambda(\eta)\Rightarrow Exp(q) \text{ as } \eta\downarrow 0.$

- First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$
- $I^* \triangleq \lceil r/b \rceil$

Exit Prob.: $O(\eta^{(l^*-1)(\alpha-1)})$ Duration: $O(1/\eta^{\alpha})$ $\Rightarrow \sigma(\eta) \sim O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b>0, there exist some q>0 and $\lambda(\eta)\approx O(\eta^{\alpha+(l^*-1)(\alpha-1)})$ such that $\sigma(\eta)\lambda(\eta)\Rightarrow Exp(q) \text{ as } \eta\downarrow 0.$

• First Exit Time: $\sigma(\eta) \triangleq \min\{j \geq 0 : X_j^{\eta} \notin \Omega\}$ • $I^* \triangleq \lceil r/b \rceil$ Exit Prob.: $O(\eta^{(l^*-1)(\alpha-1)})$ Duration: $O(1/\eta^{\alpha})$ $\Rightarrow \sigma(\eta) \sim O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b>0, there exist some q>0 and $\lambda(\eta)\approx O(\eta^{\alpha+(l^*-1)(\alpha-1)})$ such that $\sigma(\eta)\lambda(\eta)\Rightarrow Exp(q)$ as $\eta\downarrow 0$.

$$\sigma(\eta) \sim O(1/\lambda(\eta)) \approx O(1/\eta^{\alpha+(l^*-1)(\alpha-1)})$$