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Light-Tailed Distributions

Extreme Values are Very Rare

Normal, Exponential, etc

Systemwide rare events

arise because

EVERYTHING goes wrong.

(Conspiracy Principle)

Heavy-Tailed Distributions

Extreme Values are Frequent

Power Law, Weibull, etc

Systemwide rare events

arise because of

A FEW Catastrophes.

(Catastrophe Principle)

Structural difference in the way systemwide rare events arise.
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Typical Behavior of SGD

η=1/500

↑

↓
r

X η
j = X η

j−1 − η
(
∇f (X η

j−1) + Zj

)



7

Typical Behavior of SGD
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Typical Behavior of SGD

↑

↓
r

X η
j = X η

j−1 − η
(
∇f (X η

j−1) + Zj

)

↙Typical SGD path w/ small η
regardless of tail distributions
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Typical Behavior of SGD

Trajectory of SGD X η: 00η = 1/150 & noises are light-tailed

Trajectory of SGD X η: 00η = 1/150 & noises are heavy-tailed



9

Typical Behavior of SGD

Trajectory of SGD X η: 00η = 1/200 & noises are light-tailed

Trajectory of SGD X η: 00η = 1/200 & noises are heavy-tailed
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How does SGD escape local minima?
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l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise with l∗(A)

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise with l∗(A)

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise with l∗(A)

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise gradient flow with l∗(A) jumps

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise gradient flow with l∗(A) jumps

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘

↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise gradient flow with l∗(A) jumps

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



11

Catastrophe Principle in Heavy-tailed SGD

(Su, Wang, Rhee, 2021+) For ”rare event” A, (i.e. P( X η ∈ A)→ 0 as η ↓ 0)

P(X η ∈ A) ≈ η(α−1)l∗(A)

Conditioned on {X η ∈ A}, X η resembles piece-wise gradient flow with l∗(A) jumps

l∗(A) :Min # of jumps (catastrophes) to cause event A

↙ SGD path

Typical Behavior ↘ ↙ Catastrophes



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

This way?



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



12

Catastrophe Principle Dictates SGD’s Escape Route

↑

↓
r

Most likely path under heavy-tailed noises: with l∗ = 1 jump



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/10

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/10



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/25

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/25



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/50

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/50



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/75

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/75



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/100

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/100



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/150

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/150



13

Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/200

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/200



14

SGD’s Escaping Route under Gradient Clipping

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

↙Clipping threshold



14

SGD’s Escaping Route under Gradient Clipping

< r

< r

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/2, r)

Most likely path under heavy-tailed noises: with l∗ = 2 jumps

↙Clipping threshold



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/10

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/10



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/25

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/25



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/50

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/10



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/75

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/75



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/100

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/100



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/150

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/150



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/200

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/200



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/200

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/200

Conspiracy Principle



15

SGD’s Escaping Route under Gradient Clipping

Trajectory of SGD X η conditional on exit: 00light-tailed noises with η = 1/200

Trajectory of SGD X η conditional on exit: 00heavy-tailed noises with η = 1/200

Conspiracy Principle

Catastrophe Principle



16

SGD’s Escaping Route under Gradient Clipping

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2

< r
2

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2

< r
2

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2

< r
2

< r
2

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
2

< r
2

< r
2

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/3, r/2)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1 + φb

(
− η∇f (X η

j−1) + ηZj

)
, b ∈ (r/4, r/3)

↙Clipping threshold



16

SGD’s Escaping Route under Gradient Clipping

< r
3

< r
3

< r
3

< r
3

↑

↓
r

X η
j = X η

j−1(Min # of jumps for escape) l∗ = ⌈r/b⌉
(
− η∇f (X η

j−1
)↙Clipping threshold



17

First Exit Time Analysis

m
← r →
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First Exit Time: ση =∆ min{j ≥ 0 : X η
j /∈ Ω}

Effective Width (Min Distance for Escape): r =∆ infx /∈Ω |x −m|.

Relative Width (Min # of jumps for Escape): l∗ =∆ ⌈r/b⌉.

σηλ(η)⇒ Exp(q).
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λ(η) ≈ O(ηα+(l∗−1)(α−1)), deterministic
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Elimination of Narrow Minima

s1 s2m1 m2 m3

0.2 ← 0.6 → ← 0.9 → 0.3

Ω1 Ω2 Ω3

↙O(1/ηα)O(1/ηα)↘ ↙O(1/ηα)

Without Clipping

With Clipping

O(1/ηα+(l∗−1)(α−1))

Min # of jumps for escape: l∗i (Example: set b = 0.5)

Set of Widest Minima: mi ∈ Mwide iff l∗i = maxj l
∗
j .

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and β > 1 + (α− 1)maxi l
∗
i ,

1

⌊t/ηβ⌋

∫ ⌊t/ηβ⌋

0

1
{
X η
⌊u⌋ ∈

⋃
j :mj /∈Mwide

Ωj

}
du

P−→ 0 as η ↓ 0.

↖Proportion of time at narrow minima

——————————————————–

l∗1 = 1, l∗2 = 2, l∗3 = 1
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Rd Case

Same Elimination Effect in Rd
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New Training Algorithm
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Truncated Heavy-tailed SGD in Deep Learning

X : current weights; GD: gradient descent; SB: small batch; gXX: gradient under method XX.

Our Method: X ← X − φb

(
η · gheavy(X )

)
where

gheavy(X ) =∆ gSB(X )+“Heavy-tailed Noise”

Gradient noise: gSB(X )− gGD(X )

Heavy-tail Inflation: Z
(
gSB(X )− gGD(X )

)
for some heavy-tailed Z

↖ ↗
Same or independent batches? ⇒two versions
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Experiments

Test accuracy LB SB SB + Clip SB + Noise Our 1 Our 2
CorrputedFMNIST, LeNet 68.66% 69.20% 68.77% 64.43% 69.47% 70.06%
SVHN, VGG11 82.87% 85.92% 85.95% 38.85% 88.42% 88.37%
CIFAR10, VGG11 69.39% 74.42% 74.38% 40.50% 75.69% 75.87%
Expected Sharpness LB SB SB + Clip SB + Noise Our 1 Our 2
CorrputedFMNIST, LeNet 0.032 0.008 0.009 0.047 0.003 0.002
SVHN, VGG11 0.694 0.037 0.041 0.012 0.002 0.005
CIFAR10, VGG11 2.043 0.050 0.039 2.046 0.024 0.037

Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)

Consistent results under other sharpness metrics

Flatter geometry & Improved generalization performance

Requires both heavy-tailed noise and truncation
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Experiments

CIFAR10-VGG11 SB + Clip Our 1 Our 2
Test Accuracy 89.54% 90.76% 90.45%
Expected Sharpness 0.167 0.085 0.096
PAC-Bayes Sharpness 1.31× 104 9× 103 104

Maximal Sharpness 1.66× 104 1.29× 104 1.22× 104

CIFAR100-VGG16 SB + Clip Our 1 Our 2
Test Accuracy 56.32% 65.44% 62.99%
Expected Sharpness 0.857 0.441 0.479
PAC-Bayes Sharpness 2.49× 104 1.9× 104 1.98× 104

Maximal Sharpness 2.75× 104 2.12× 104 2.16× 104

More training techniques: Data augmentation, learning rate scheduler.
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Conclusion

Theoretical Contribution

Rigorously established that truncated heavy-tailed noises can eliminate sharp minima

Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD

Algorithmic Contribution

Proposed a tail-inflation strategy to find flatter solution with better generalization
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Remarks on Technical Results

“Regularity conditions”

: Irreducibility
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We established similar results for the reducible case.

Rd Extension

First exit time results in Rd

Rd simulation experiments
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Remarks on Technical Results

“Regularity conditions”: Irreducibility

s1 s2−L Lm1 m2 m3

0.2 ← 0.6 → ← 0.9 → 0.3

Ω1 Ω2 Ω3

m1 m2 m3

l2, 1=2

l1, 2=1

l3, 2=1

l2, 3=2

b=0.5

m1 m2 m3

l2, 1=2

l1, 2=1

l3, 2=1

l2, 3=3
×

b=0.4

We established similar results for the reducible case.

Rd Extension

First exit time results in Rd

Rd simulation experiments
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First Exit Time Analysis

↑

↓
r

m

s +

s −

Ω= (s − , s + )

First Exit Time: σ(η) =∆ min{j ≥ 0 : X η
j /∈ Ω}

l∗ =∆ ⌈r/b⌉

↖
Exit Prob.: O(η(l

∗−1)(α−1))

Duration: O(1/ηα)

⇒ σ(η) ∼ O(1/ηα+(l∗−1)(α−1))

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and such that

σ(η)λ(η)⇒ Exp(q) as η ↓ 0.

σ(η) ∼ O(1/λ(η)) ≈ O(1/ηα+(l∗−1)(α−1))
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