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o Generalization Mystery of Stochastic Gradient Descent (SGD)
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Intro: Generalization Gap and Flat Minima

@ Generalization of DNN
o Generalization Mystery of Stochastic Gradient Descent (SGD)
o Empirical Observations: Flat minima (as opposed to sharp minima) generalize better.

o Among 40+ metrics, sharpness metrics predict generalization best. (Jiang et al., 2020)

o Q: SGD prefers flat minima?
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Intro: Heavy-tailed SGD Prefers Flat Minima

Teaditi : o L .
SGD  Xj= X1 —n(VF(X-1) + Z)
™\ Heavy-tailed
@ Heavy-tailed Noises: EZ; =0, P(||Zj|| > x) resembles power law x~
@ Heavy tails in deep learning: Srinivasan et al. (2021); Garg et al. (2021);

@ Why heavy tails arise: Hodgkinson & Mahoney (2020);
o Heavy-tailed SGD prefers flat minima: Simsekli et al. (2019)

Our Work: Complete Elimination of Sharp Minima
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Gradient Clipping

X = X1 — eo(0VF(Xo1) + 1Z)); - 2u(x) = min{b,||x|}
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Q: Why does truncated heavy-tailed noise help?
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Rare Events depend on “Tail Behaviors”

Light-Tailed Distributions Heavy-Tailed Distributions
@ Extreme Values are Very Rare @ Extreme Values are Frequent
@ Normal, Exponential, etc @ Power Law, Weibull, etc
Systemwide rare events Systemwide rare events
arise because arise because of
EVERYTHING goes wrong. A FEW Catastrophes.
(Conspiracy Principle) (Catastrophe Principle)

Structural difference in the way systemwide rare events arise.
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Typical Behavior of SGD
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Typical Behavior of SGD
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Typical Behavior of SGD
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How does SGD escape local minima?
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Catastrophe Principle in Heavy-tailed SGD

.~ SGD path
(Su, Wang, Rhee, 2021+) For "rare event” A, (i.e. IP( €A)—0asnl0)

o P(X" € A) ~ 77(0471)/*(/\)
Typical Behavior  Catastrophes

o Conditioned on {X" € A}, X" resembles piece-wise | gradient flow | with /*(A)

@ /*(A) :Min # of jumps (catastrophes) to cause event A
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Trajectory of SGD X" conditional on exit:
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Trajectory of SGD X" conditional on exit:
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Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X" conditional on exit: light-tailed noises with n = 1/100
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Trajectory of SGD X" conditional on exit: light-tailed noises with n = 1/150
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Catastrophe Principle Dictates SGD’s Escape Route

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

Most likely path under heavy-tailed noises: with [* = 2 jumps
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. Clipping threshold
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:

light-tailed noises with n = 1/10
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:

light-tailed noises with n = 1/25

1\,

(

5 i

A

(WIS

o

AV
NM(

o §

WA §

%\«/\

Trajectory of SGD X" conditional on exit:

(

|

-

—{

R

T

heavy-tailed noises with ) = 1/25

BN
I

S

[

TN

M

15



SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit: light-tailed noises with n = 1/50
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

Trajectory of SGD X" conditional on exit:
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SGD'’s Escaping Route under Gradient Clipping

. Clipping threshold
X' = X"+ op(— V(X)) +nZ), be(r/3,r/2)
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SGD'’s Escaping Route under Gradient Clipping

. Clipping threshold
(Min # of jumps for escape) I* = [r/b]
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@ Relative Width (Min # of jumps for Escape): /* £ [r/b].
(Wang, Oh, Rhee, 2021+) As 1 | 0, 0"A(n) = Exp(q).
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First Exit Time Analysis

o First Exit Time: 0”7 = min{j > 0: X/ ¢ Q}
o Effective Width (Min Distance for Escape): r = inf,¢q |x — m|.

@ Relative Width (Min # of jumps for Escape): /* = [r/b].
o’ ~ O(1/A(n)) = O(1/n* "~ Dle=D)
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Elimination of Narrow Minima

Without Clipping
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Elimination of Narrow Minima

[o3} o o8
F=1, k=2 k=1

@ Min # of jumps for escape: [ (Example: set b =0.5)
o Set of Widest Minima: m; € M"i¢® iff [* = max; [

Theorem (Wang, Oh, Rhee, 2021+)

Under structural conditions on loss landscape, for any t > 0 and 8 > 1+ (a — 1) max; [,
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Elimination of Narrow Minima

[o3} o o8
F=1, k=2 k=1

@ Min # of jumps for escape: [ (Example: set b =0.5)
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Theorem (Wang, Oh, Rhee, 2021+)
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RY Case

@ Same Elimination Effect in R?
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training iteration le7

19



New Training Algorithm
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Truncated Heavy-tailed SGD in Deep Learning

@ X: current weights; GD: gradient descent; SB: small batch; gxx: gradient under method XX.

Our Method: X < X — ¢b(1 - gheavy(X)) where

gheavy(X) = gSB(X) + Z( - gLB(X) + gSB*(X))
N /

Same or independent batches? =-two versions

Gradient noise: gsg(X) — gap(X)

Heavy-tail Inflation: Z(gsg(X) — gep(X)) for some heavy-tailed Z
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Experiments

Test accuracy LB SB SB 4 Clip SB + Noise Our1 Our 2
CorrputedFMNIST, LeNet 68.66% 69.20% 68.77% 64.43% 69.47%  70.06%
SVHN, VGG11 82.87% 85.92% 85.95% 38.85% 88.42% 88.37%
CIFAR10, VGG11 69.39% 74.42% 74.38% 40.50% 75.69%  75.87%
Expected Sharpness LB SB SB 4 Clip SB + Noise Our1 Our 2
CorrputedFMNIST, LeNet 0.032 0.008 0.009 0.047 0.003 0.002
SVHN, VGG11 0.694 0.037 0.041 0.012 0.002 0.005

CIFAR10, VGGI1 2.043 0.050 0.039 2.046 0.024 0.037
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SVHN, VGG11 0.694 0.037 0.041 0.012 0.002 0.005
CIFAR10, VGG11 2.043 0.050 0.039 2.046 0.024 0.037

o Expected Sharpness: Zhu et al. (2019); Neyshabur et al. (2017b)
o Consistent results under other sharpness metrics
o Flatter geometry & Improved generalization performance

@ Requires both heavy-tailed noise and truncation
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Experiments

CIFAR10-VGG11 SB + Clip Ourl Our 2

Test Accuracy 89.54% 90.76% 90.45%
Expected Sharpness 0.167 0.085 0.096
PAC-Bayes Sharpness  1.31 x 10* 9 x 103 10
Maximal Sharpness 1.66 x 10* 1.29 x 10*  1.22 x 10*
CIFAR100-VGG16 SB + Clip Ourl Our 2

Test Accuracy 56.32% 65.44% 62.99%
Expected Sharpness 0.857 0.441 0.479
PAC-Bayes Sharpness 2.49 x 10* 1.9 x 10*  1.98 x 10*
Maximal Sharpness 2.75 x 104  2.12 x10* 2.16 x 10*

@ More training techniques: Data augmentation, learning rate scheduler.
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Conclusion

e Theoretical Contribution
o Rigorously established that truncated heavy-tailed noises can eliminate sharp minima

o Catastrophe principle, first exit time analysis, and metastability for heavy-tailed SGD

e Algorithmic Contribution

o Proposed a tail-inflation strategy to find flatter solution with better generalization
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Remarks on Technical Results

@ “Regularity conditions”: Irreducibility
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Remarks on Technical Results
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Remarks on Technical Results

@ “Regularity conditions”: Irreducibility

0.2« 06« 09 - i03 i
-—

a Q Q3

o We established similar results for the reducible case.

o RY Extension

o First exit time results in R?
o R? simulation experiments
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a Q - Q4= . L
e 2 = gradl;hp gradient clipping
3 no clip
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- 12
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Q2 —
1 1.0
o 08 a = —
QT e e
= 06 no gradient clipping
Q3 —
-2 0.4
-3 02 Q2
-4 0.0 Q1
0.0 15 20 25 3.0

training iteration le7
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First Exit Time Analysis

Q=(s",s%) s*

3

o First Exit Time: o(n) = min{j >0: X/ ¢ Q}
e I*£[r/b]
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Theorem (Wang, Oh, Rhee, 2021)
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a(mA(n) = Exp(q) asn | 0.
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Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and \(n) ~ O(n>*("~1(=1)) sych that

a(mA(n) = Exp(q) asn | 0.
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First Exit Time Analysis

Q=(s",s") s*

¥ WW :

r /,/’N\W/J‘w g

L|Ss”

S~
N
Exit Prob.: O(n{"~1(e=1))
o First Exit Time: o(n) = min{j >0: X/ ¢ Q} Duration: O(1/n%)

I* = [r/b] = o(n) ~ O(1/y " ~Dle1)

Theorem (Wang, Oh, Rhee, 2021)

For (Lebesgue) almost every b > 0, there exist some q > 0 and \(17) ~ O(n**+("=D(e=1)) sych that

a(mA(n) = Exp(q) asn | 0.

a(n) ~ O(1/A(n)) ~ O(1/n*+"~Hla=b)
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